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Abstract
The influence of the inhomogeneous distribution of the magnetic flux on
quantum transport through coupled double quantum dots embedded in an
Aharonov–Bohm interferometer are investigated. We show that the effective
tunnelling coupling between two dots can be tuned by the magnetic flux
imbalance threading two AB subrings. Thus the conductance and the local
densities of states become periodic functions of the magnetic flux imbalance.
Therefore, transport signals can be manipulated by adjusting the magnetic
flux imbalance. Thus accurate control of the distribution of the magnetic
flux is necessary for any practical application of such an Aharonov–Bohm
interferometer.

1. Introduction

Due to recent advances in nanotechnologies, quantum transport through ultra-small quantum
dots (QD) has drawn considerable interests in the last few decades [1]. In such small structures
with geometrical dimensions smaller than the elastic mean free paths, electron transport is
ballistic and its phase coherence can be sustained. To probe the coherence, interference
experiments, most notably Aharonov–Bohm (AB) interferometry, are needed. The presence of
conductance oscillations as a function of magnetic flux has been experimentally demonstrated
for AB interferometers with one QD [2–7]. In [7], a mesoscopic Fano effect with complex
Fano asymmetric parameters is observed and it is shown that the Fano effect can be a powerful
tool to investigate the electron phase variation in such mesoscopic transport.

Recently, an AB interferometer containing two coupled QDs with a QD inserted in each
arm has also been studied experimentally [8–11]. While there have already been many works
on the AB interferometer containing two QDs, most of them only consider the system without
direct coupling between dots. The particular interest in the coupled system lies in its potential
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application in quantum communication [12], because entanglement of electrons is possible in
the presence of direct tunnelling between dots. Just like a molecule of two atoms, two coupled
QDs can form bonding and antibonding states. Therefore, such an AB interferometer can also
be used to probe the phase coherence of the bonding between dots. Moreover, the possibility to
control each of the two QDs separately increases the dimension of the parameter space for the
transport properties compared to their single-dot AB counterparts. Thus it can be considered
as the starting point of the study of an experimentally unexplored region. Motivated by these
experimental works, theoretical investigations of such a system have just begun [13, 14]. It
is noted in [13] that the interdot tunnelling divides the AB interferometer into two coupled
subrings, and the total magnetic flux through the device is composed of magnetic flux through
the two subrings. If the applied magnetic field is non-uniform and/or the construction of the
AB interferometer is asymmetric, the magnetic flux threading two subrings can, in general, be
different3. The possibility of the non-uniform distribution of magnetic flux is not taken into
account in [14].

In this paper, the AB interferometer containing two coupled QDs is investigated and we
focus our attention on the effect of inhomogeneous magnetic flux. While this effect has been
studied in [13] by solving numerically the modified rate equations, they consider only a special
case with integer values of the magnetic flux ratio of two subrings. Our aim is to provide general
analytic expressions for the conductance and the local densities of states, which may serve as
guides for both ongoing and future experimental endeavours4.

By solving exactly a simple model system, we derive general formulae for the conductance
and the local densities of states, which include most of the previous results [13, 14, 16].
Moreover, we find that non-uniform distribution of the magnetic field piercing the AB
interferometer will have an important influence on electron transport. Thus complex
characteristic transport features can occur, which can easily be manipulated by applied gate
voltages and magnetic flux. First, the magnetic flux imbalance contributes a phase factor to the
tunnelling coupling. Thus the overlapping of the dot’s wavefunctions can be tuned through the
phase of the interdot tunnelling matrix element by adjusting the flux imbalance. Second, the
conductance and the local densities of states consist of the Breit–Wigner and Fano resonances.
The corresponding Fano factors, the positions and widths of these resonances depend not only
on the total magnetic flux but also on the magnetic flux imbalance. Thus electron transport can
be controlled by changing both the total magnetic flux and the magnetic flux imbalance. Third,
the normal AB oscillations with a period of 2π are destroyed and complex periodic oscillations
can be generated. The oscillation periods for the total magnetic flux and the magnetic flux
imbalance are, in general, 4π , while in some particular situations the 2π-periodicity can be
recovered. Besides the 2π- and the 4π-period oscillation, if φ and δφ are not independent, the
oscillating periods can have other possibilities. For the particular case where the ratio of the
magnetic flux in two subrings is an integer n [13], the oscillating period becomes 2(n + 1)π .
All of these results can be easily read off from our general analytic expressions. Furthermore,
the AB oscillations can be very sensitive to the magnetic flux imbalance. Thus accurate control
of the distribution of the magnetic flux is necessary for any practical application of such an
AB interferometer.

3 Here we suggest a possible way to adjust experimentally the flux imbalance in the double-dot AB interferometer.
A periodic magnetic field with period about 1 µm has been generated by using a regular array of superconductors
(Carmona et al [15]) or micromagnets (Ye et al [15]). By covering various periodic magnetic fields with different
periods on the top of the sample with the double-dot AB interferometer, one can change to some extent the magnetic
flux imbalance threading two subrings.
4 For example, our general analytic expressions of the conductance and the local densities of states provide a better
fitting formula for the experimental data as long as the flux imbalance is there. The fitting parameter of the flux
imbalance can give an indication of the degree of asymmetry in the construction of the AB interferometer.



Effect of inhomogeneous magnetic flux on double-dot Aharonov–Bohm interferometer 2055

ε

ε

⊗ ⊗
ΦΦ

Figure 1. Schematic diagram of two transversely coupled quantum dots embedded in an Aharonov–
Bohm interferometer.

The paper is organized as follows. We describe the model in section 2. The general
expressions of the differential conductance and the density of states are derived there. In
section 3, we evaluate the conductance as a function of the Fermi energy and show that
the conductance in the present case consists of two resonances which are composed of a
Breit–Wigner resonance and a Fano resonance. The local densities of states are calculated in
section 4, which show similar behaviours to the conductance. In section 5, the AB oscillation
of the conductance as a function of total magnetic flux and flux imbalance are studied. Finally,
the results are summarized and discussed in section 6. In sections 3–5 symmetric coupling of
the dots to the left and right leads is assumed for simplicity. The effect of asymmetric coupling
is briefly discussed in the appendix.

2. Theory

We consider an AB geometry as depicted in figure 1, which is basically equivalent to the
experimental set-up of [8]. The interdot and the intradot electron–electron interactions are
neglected and only one energy level in each dot is assumed relevant. The magnetic flux
threading the right-handed (left-handed) subring is denoted by �R (�L). Thus the total
magnetic flux through the whole AB interferometer is � = �L + �R. The Hamiltonian
of the system can be written as

H =
∑
kα

εkαc†
kαckα + d†H0d +

∑
kα

(c†
kαVkαd + H.c.), (1)

where c†
kα (ckα) are the creation (annihilation) operators for electrons with momentum k in the

leads α = L, R. For convenience, we introduce the following matrix representation for the
dynamics of the isolate double QDs and the tunnelling between dots and leads:

d† = (d†
1 , d†

2 ), d =
(

d1

d2

)
,

H0 =
(

ε1 t
t∗ ε2

)
,

Vkα = (Vkα1, Vkα2),

where di (d†
i ) annihilates (creates) an electron in the i th dot (i = 1, 2). The energy level in

dot i is denoted by εi , which can be varied by the applied gate voltages. t is the interdot
tunnelling coupling and Vkαi are the tunnelling matrix elements between dots and leads.
The magnetic flux is described by an AB phase factor attached to the interdot tunnelling
coupling and the tunnelling matrix elements. We choose a gauge such that t = |t| exp(iδφ/2),
VkL1 = |VkL1| exp(−iφ/4), VkL2 = |VkL2| exp(iφ/4), VkR2 = |VkR2| exp(−iφ/4) and
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VkR1 = |VkR1| exp(iφ/4) with the (dimensionless) total magnetic flux φ ≡ 2π�/�0 and
the (dimensionless) magnetic flux imbalance δφ ≡ 2π(�L −�R)/�0, where �0 = h/e is the
flux quantum.

By employing the Landauer formula at zero temperature, the differential conductance G
is related to the transmission T (ω) of an electron of energy ω [17]:

G = e2

h
T (εF), (2)

where εF stands for the Fermi level of both leads. The total transmission T (ω) can be expressed
as

T (ω) = Tr{ΓLGa(ω)ΓRGr(ω)}, (3)

where Gr(a)(ω) is the Fourier transform of the retarded (advanced) Green function of the QDs,
Gr(a)(t) = ∓iθ(±t)〈{d(t), d†(0)}〉, where θ(t) is the step function and the upper (lower)
signs correspond to the retarded (advanced) one. The matrix Γα = 2π

∑
k V†

kαVkαδ(ω − εkα)

describes the tunnelling coupling of the two QDs to the lead α. Here we neglect the energy
dependence of Γα. Notice that the off-diagonal matrix elements of Γα are complex numbers
due to the AB phase factors.

By using the equation of motion method, the exact retarded (advanced) Green function of
the QDs is given by

Gr(a)(ω) = 1

Dr(a)(ω)

(
ω − ε2 ± i

2 	22 t ∓ i
2	12

t∗ ∓ i
2	21 ω − ε1 ± i

2	11

)
, (4)

where

Dr(a)(ω) =
(

ω − ε1 ± i

2
	11

)(
ω − ε2 ± i

2
	22

)
+

1

4
(|	L

12|2 + |	R
12|2) +

1

2
|	L

12||	R
12| cos φ

− |t|2 ∓ i|t||	L
12| cos

(
φ + δφ

2

)
∓ i|t||	R

12| cos

(
φ − δφ

2

)
(5)

with Γ = ∑
α Γα. From the above expression, we find that the conductance depends not only

on the total magnetic flux φ, but also on the magnetic flux imbalance δφ between the right and
the left parts of the present double-dot AB interferometer. As mentioned before, without the
interdot tunnelling coupling |t| = 0, there is only one loop in the AB interferometer and the
transport is determined only by the phase φ. In the special case of zero magnetic field, our
result reduces to that obtained in [16].

From equations (4) and (5), general expressions of the conductance and the local density
of states can be reached. However, since we focus our attention on the effect of flux imbalance,
we assume for simplicity that the magnitudes of the tunnelling matrix elements between the
dots and the leads are the same. Thus all of the magnitudes |	α

i j | become identical, which is
denoted by 	/2, while their values are not the same because of the AB phase factors. (As shown
in the appendix, the following results are qualitatively unchanged even when the magnitudes
of |	α

i j | are different.) After substituting equations (3)–(5) into (2), we can obtain a compact
form of the differential conductance:

G = e2

h

(e+ − e−)2 + 4


|(i − e+)(i − e−) − 
′|2 (6)
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with

e± ≡ 2(ε̄ ± |t| cos δφ

2 − εF)

	±
,


 ≡ (δε)2

	+	−
,


′ ≡ (δε)2 + 4|t|2 sin2 δφ

2

	+	−
,

	± ≡
(

1 ∓ cos
φ

2

)
	,

(7)

where ε̄ ≡ (ε1 +ε2)/2 and δε ≡ ε1 −ε2 denote the mean energy and the energy detuning of two
QDs, respectively. The parameters of e+ and 	+ (e− and 	−) are relevant to the antibonding
(bonding) state of the QD molecule. From the above result, we find that the conductance shows
oscillation patterns when either the total magnetic flux φ or the magnetic flux imbalance δφ

is changed (see also section 5). We note that equation (6) becomes identical to that obtained
in [14] in the special case of δφ = 0, which will even reduce to the result obtained in [18] in
the case of the absence of the interdot coupling (t = 0). However, when the distribution of
the magnetic flux is non-uniform (i.e. δφ �= 0), more interesting behaviours can show up. It is
clear from the expression of e± that, by adjusting the phase of the interdot tunnelling matrix
element through the flux imbalance δφ in the AB interferometer, one can tune the overlapping
of the dot’s wavefunctions. Moreover, the level crossing of the bonding and the antibonding
states can occur by varying δφ. We emphasize again that these are possible only when interdot
tunnelling coupling is nonzero.

The local density of states at the i th QD is given by ρi (ω) = −ImGr
ii(ω)/π . By using

the expression of the retarded Green function in equation (4), the general formula of the local
densities of states at εF can be written as

ρ1(2)(εF) = 	+e2
+ + 	−e2− + (	+ + 	−)(1 + 
′) ∓ 2δε(e+ + e−)

2π	+	−|(i − e+)(i − e−) − 
′|2 , (8)

where the upper (lower) sign corresponds to ρ1 (ρ2). Because most of the parameters defined
in equation (7) depend on φ and/or δφ, the local densities of states ρ1 and ρ2 again have
oscillating behaviours as the total magnetic flux and/or the magnetic flux imbalance are varied.

3. Conductance

The general form of the conductance in equation (6) is quite similar to that obtained in [14]
for the δφ = 0 case. Therefore, following the same kind of analysis, one can easily show
that the conductance in the present case consists of two resonances which are composed of a
Breit–Wigner resonance and a Fano resonance.

Without loss of generality,we can discuss the case in the limit	− � 	+. If the energy scale
is larger than 	+ (|e+| � 1), the conductance in equation (6) indeed takes the Breit–Wigner
form:

G 	 GBW = e2

h

1

e2− + 1
. (9)

Its width is 	− which depends on the total magnetic flux but not on the flux imbalance (see
equation (7)). Near the narrower resonance regime (|e+| � 1), the conductance does show the
Fano resonance behaviour:

G 	 GFano = e2

h
Tb

|e′
+ + Q|2

e′
+

2 + 1
, (10)
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where the background transmission is given by Tb = 1/(q2 + 1) with q = 4|t| cos(δφ/2)/	−
and

e′
+ = e+ + qTb


′

1 + Tb
′ . (11)

The modified Fano factor is now given by

Q = q
1 − Tb


′

1 + Tb
′ + i
2
√




1 + Tb
′ , (12)

and the width of the Fano resonance becomes 	′
+ = 	+(1 + Tb


′). While these results are for-
mally identical to those obtained in [14],we show that the modified Fano factor, the position and
width of the resonance all depend not only on the total magnetic flux φ, but also on the magnetic
flux imbalance δφ. Thus transport signals can be manipulated by adjusting both φ and δφ.

For the perfectly symmetrical geometry (i.e. δε = 0 and |	α
i j | are all the same) and in the

case of zero magnetic field (or more generally |cos(φ/2)| = 1 and |cos(δφ/2)| = 1), the
width of the Fano resonance becomes zero (or the lifetime of the antibonding state becomes
infinitely long). It is because the antibonding state now becomes totally decoupled to the leads.
Therefore, the Fano resonance will disappear in this case. This phenomena had been pointed
out a decade ago [19], which is recently called as a ‘ghost of Fano resonance’ [16]. We note
that this disappearance of the Fano resonance can happen only in this very special case. For
example, even for the perfectly symmetrical geometry, the Fano resonance will show up when
the magnetic field is turned on (see also the appendix).

To illustrate the above discussions, the differential conductance G as a function of the
Fermi energy εF is shown in figure 2 for various δφ with |t|/	 = 1, δε = 0 (the so-called
‘covalent limit’) and φ = 0.3π . Here ε̄ is taken as the zero-energy level. Figure 2(a)
reproduces the topmost one of figure 2 in [14]. We find that, as δφ increases from zero to
π , two resonances come closer and closer, and finally two energy levels of resonance meet
each other when δφ = π . This can be understood from the expressions of e− and e′

+. For a
further increase of δφ, the Breit–Wigner resonance keeps moving to the positive-energy side
while the Fano resonance goes to the negative-energy side. The resonance levels will move
back when δφ > 2π and the curve for δφ = 0 is recovered when δφ is increased to 4π . Thus
the conductance has in general a period of 4π for δφ (for further discussions, see section 5).

In figure 2, we find that the zero and the full transmission can occur at some particular values
of the Fermi energies. The analytic expressions of these Fermi energies can be easily derived.
From equations (6) and (7), it is obvious that, if the two levels of the double QDs are not the same
(δε �= 0), the conductance cannot be zero. In this case, 
 �= 0 and the modified Fano factor in
equation (12) becomes a complex number. It means that the completely destructive interference
in the present AB interferometer will not appear in this case. However, when δε = 0, the
completely destructive interference and transmission zero happen at the Fermi energy

εF = ε̄ + |t| cos
δφ

2

/
cos

φ

2
, (13)

provided that sin(φ/2) �= 0 or sin(δφ/2) �= 0. It is sensitive to the total magnetic flux φ and
the magnetic flux imbalance δφ. On the other hand, the conductance can reach its quantum
limit G = e2/h at the Fermi energies

εF = ε̄ ±
√(

δε

2

)2

+ |t|2 −
(

	

2

)2

sin2 φ

2
(14)

if sin(φ/2) sin(δφ/2) = 0 and the expression in the square root is positive. The last term in
the square root of equation (14) gives the so-called ‘flux-dependent level attraction’ mentioned



Effect of inhomogeneous magnetic flux on double-dot Aharonov–Bohm interferometer 2059

ε

G

–4 –2 0 2 4

0

0.5

1

0

0.5

0

0.5

0

0.5

0

0.5

(a)

(b)

(c)

(d)

(e)

Figure 2. Differential conductance G in units of e2/h (full curves) as a function of the Fermi
energy (in units of 	) for various flux imbalances. The results shown in panels (a)–(e) correspond
to the flux imbalances δφ = 0, π/2, π , 3π/2 and 2π . Other parameters are given by ε̄ = δε = 0,
|t|/	 = 1 and φ = 0.3π . Broken and chain curves denote the Breit–Wigner and the generalized
Fano asymptote given in equations (9) and (10), respectively.

in [18]. From the above discussion it is realized that the value of transmission will in general
not be zero or one unless some particular conditions happen to be satisfied5.

4. Local density of states

Similar behaviours to the results in the previous section can be found by examining the local
density of states in each of the quantum dots.

For the perfectly symmetrical geometry, δε = 0 and δφ = 0. Therefore 
 = 
′ = 0 and
equation (8) reduces to

ρ1 = ρ2 = 1

2π	−(e2− + 1)
+

1

2π	+(e2
+ + 1)

. (15)

That is, both of the local densities of states take the form of the superposition of two Breit–
Wigner resonances of widths 	− and 	+ at the bonding and antibonding energies, respectively.
However, in other cases, following the same kind of analysis in the previous section, it can be
shown that the local densities of states consist of a Breit–Wigner at the bonding energy and a
Fano lineshape at the antibonding energy.

Without loss of generality, we discuss the case again in the limit 	− � 	+. If the energy
scale is larger than 	+ (|e+| � 1), both of the local densities of states in equation (8) take the

5 Similar expressions of the Fermi energies corresponding to the zero and the full transmission have been given
in [16] and [18] for various limiting cases. By taking δφ = 0 and t = 0, equation (14) reduces to the condition
of full transmission given in [18]. On the other hand, when the magnetic field is absent and the set-up is perfectly
symmetrical, i.e. φ = δφ = 0 and δε = 0, equations (13) and (14) can be related to those in [16].
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Figure 3. Local density of states at a QD as a function of the Fermi energy (in units of 	). The
results shown in panels (a)–(e) correspond to the flux imbalances δφ = 0, π/2, π , 3π/2 and 2π .
Other parameters are the same as those used in figure 2. Broken and chain curves denote the
Breit–Wigner and the generalized Fano asymptote given in equations (16) and (17), respectively.

Breit–Wigner form of width 	−:

ρ1(2) 	 1

2π	−(e2− + 1)
. (16)

Near the narrower resonance regime (|e+| � 1), the local densities of states show the Fano
resonance behaviour:

ρ1(2) 	 ρb
|e′

+ − P1(2)|2
1 + e′

+
2 , (17)

where ρb ≡ Tb/(2π	−) and the corresponding Fano factor is

P1(2) =
qTb


′ ±
√



	−
	+

1 + Tb
′ + i

√[(
q ±

√

 	+

	−

)2
+ (1 + 
′ − 
)

(
1 + 	+

	−

)]
	−
	+

1 + Tb
′ , (18)

where the upper (lower) sign corresponds to P1 (P2). The Fano factor in equation (18) is
more complicated than that for the conductance (equation (12)). Thus it is possible in some
situations (say, 
 = 0) that P1(2) is a complex number but Q is real. Notice that the present
Fano factors are in general not the same for different QDs. From the above results, it can
be understood that the Fano factor P1(2), the position and width of the resonance can all be
manipulated by adjusting both the total magnetic flux φ and the magnetic flux imbalance δφ.
In the absence of the magnetic field, the above expressions are equivalent to equations (27)
and (28) of [16].

The local density of states of as a function of Fermi energy εF is plotted in figure 3 for the
same parameters used in figure 2. In this case, ρ1 = ρ2. We find that the same level crossing
appears as δφ is varied and the curve again has a period of 4π for δφ (for further discussions,
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see section 5). We notice that the local density of states is always nonvanishing for the chosen
parameters, because the Fano factor P1(2) is complex in these cases. As compared with figure 2,
it is found that the states with small density of states can have almost full transmission and those
with large density of states can show zero transmission. This indicates that the full and the
zero transmission are indeed consequences of the quantum interference, as mentioned before.

5. Aharonov–Bohm oscillations

We now discuss the AB oscillation of the conductance as a function of total magnetic flux φ

and the magnetic flux imbalance δφ with fixed mean energy ε̄ and energy detuning δε of two
QDs.

From equation (6), it is clear that the conductance (and also the local densities of states,
see equation (8)) is a periodic function of both φ and δφ. The oscillation periods for φ and
δφ are in general 4π . The 4π-period oscillation for δφ has been implied in figure 2, and the
4π-period oscillation for φ in the case of δφ = 0 has been found in [14]. However, in the
following particular situations, the 2π-periodicity can occur.

(i) If we take εF = ε̄, then 	+e+ = −	−e− = 2|t| cos(δφ/2). In this case, one can show that
the conductance is now a function of cos2(φ/2) and cos2(δφ/2). Hence the conductance
shows 2π-period oscillation6. This 2π-period oscillation for δφ can be understood from
figure 2, if we trace the change of G at εF = ε̄ = 0 as δφ is varied from 0 to 2π .

(ii) If δφ = π (or more generally cos(δφ/2) = 0), we have 	+e+ = 	−e− = 2(ε̄ − εF).
Therefore, the conductance becomes a function of cos2(φ/2) and the oscillation periods
for φ is 2π .

(iii) If φ = π (or more generally cos(φ/2) = 0), we have 	+ = 	− = 	. In this case, the
conductance is a function of cos2(δφ/2) with a 2π-period oscillation for δφ.

As an illustration, the AB oscillation as a function of φ is shown in figure 4 for different
values of δφ with |t|/	 = 0.3 and δε/	 = 0.1. Here we choose εF = ε̄ − √

(δε/2)2 + |t|2,
which is the energy for the bonding state when the QDs are decoupled to the leads. ε̄ is again
taken as the zero-energy level for convenience. The curve for δφ = 0 corresponds to the A1
curve in figure 4(c) of [14], where sharp peaks around φ = 4nπ (n = 0,±1,±2, . . .) result.
It shows that the conductance can be very sensitive to the total magnetic flux φ for the chosen
parameters (say, near φ = 0). This opens the possibility to manipulate transport in a nontrivial
way by varying the magnetic field. As shown in figure 4, we see that this sensitivity can even
be strengthened when δφ is present. As δφ increases to π , the periodicity even changes from
4π to 2π , as discussed above.

Besides the 2π- and 4π-period oscillation studied above, it is found that, if φ and δφ are
not independent, the oscillating periods can have other possibilities [13]. The authors of [13]
show numerically that the oscillating period will be 2(n+1)π when δφ = [(n−1)/(n+1)]φ (or
the magnetic flux ratio �L/�R = n) with n being integers. This result can be easily explained
from our analytic expression of equation (6). As φ is being varied from 0 to 2(n + 1)π , δφ

is increased from 0 to 2(n − 1)π and therefore we have 	± → 	±, e± → e± (	± → 	∓,
e± → e∓) and 
′ → 
′ if n is odd (even). This puts G back to its original value. It means
that the oscillating period is 2(n + 1)π in this case.

6 In this case, the total density of states, ρ1 +ρ2, has also 2π -oscillating periods for φ and δφ. However, the oscillating
periods for φ and δφ of the local densities of states, ρ1 and ρ2, are still 4π unless 
 = 0 (i.e. the energy detuning
δε = 0).
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Figure 4. AB oscillations as a function of the total magnetic flux φ for various flux imbalances δφ.
(a) δφ = 0 (full curve), π/2 (dotted curve), π (broken curve). (b) δφ = π (broken curve), 3π/2
(dotted curve) and 2π (full curve). Here the Fermi energy is taken as the energy for the bonding
state when the QDs are decoupled to the leads (see the text). Other parameters are given by ε̄ = 0,
|t|/	 = 0.3, δε/	 = 0.1.

6. Conclusions

In conclusion, we have investigated the influence of the non-uniform distribution of the
magnetic flux on quantum transport through coupled double QDs embedded in an AB
interferometer. We show that the effective tunnelling coupling between two dots can be tuned
by the magnetic flux imbalance δφ threading two AB subrings. Therefore, the conductance
and the local densities of states become periodic functions of δφ. Moreover, the conductance
and the local densities of states are shown to be composed of a Breit–Wigner resonance and a
Fano resonance. The corresponding Fano factors, the positions and widths of the resonances all
depend not only on φ but also on δφ. Thus transport signals can be manipulated by adjusting
both φ and δφ. Finally, we point out that the AB oscillations can be very sensitive to δφ.
Thus accurate control of the distribution of the magnetic flux is necessary for any practical
application of such an AB interferometer.
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Appendix. Effect of asymmetric coupling between dots and leads

In this appendix, we devote ourselves to the effect of differences in the matrix elements of 	α
i j .

As an example, we follow the set-up which is considered in [16] in the case of zero magnetic
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field: 	R
11 = 	L

22 ≡ γ1 and 	L
11 = 	R

22 ≡ γ2, and the magnitudes of the off-diagonal matrix
elements |	L

21| = |	L
12| = |	R

21| = |	R
12| ≡ √

γ1γ2.
In this case, the conductance and the local densities of states are again given by

equations (6) and (8), respectively, where e± and 
′ are identical to those given in equation (7),
but 
 and 	± now become:


 =
[

2(γ1 − γ2)|t| sin δφ

2 − 2
√

γ1γ2δε sin φ

2

	+	−

]2

, (A.1)

	± = (γ1 + γ2) ∓ 2
√

γ1γ2 cos
φ

2
. (A.2)

When γ1 = γ2 ≡ 	/2, the above expressions reduce to the corresponding ones in equation (7).
Thus, merely by replacing the functional forms of 
 and 	±, the discussions in the text are still
applied in this case of asymmetric coupling between dots and leads. From equation (A.2), one
finds that, when φ = 0, 	+ approaches zero as γ1 − γ2 → 0. This result had been pointed out
in [19]. However, for nonzero magnetic field, none of 	± will be zero in the limit γ1 −γ2 → 0
as long as |cosφ

2 | �= 1. Thus the phenomena of a ‘ghost of Fano resonance’ [16] will not appear
when the magnetic field is nonzero.
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